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The behavior of ferrimagnetic garnets with three magnetic sublattices in an external field
has been investigated. In the field-temperature plane we determined the stability limits of
the collinear phases with respect to angle formation between the various sublattice moments.
The application of our molecular-field analysis to gadolinium iron garnet (GdIG) shows that
the angle formation between the two strongly coupled iron sublattices cannot be neglected.
By measuring the Faraday effect in fields up to 10 kOe, we were able to observe the angled
spin phase in GdIG in the vicinity of the compensation point.

I. INTRODUCTION

A magnetic field applied to a ferrimagnet in
which the sublattice moments are collinear tends
to align all the moments parallel to itself, in op-
position to the exchange interactions which try to
maintain the ferrimagnetic antiparallel configura-
tion. Under certain conditions of field and tempera-
ture, this competition canresultinspin configurations
in which the individual sublattice moments form
angles with each other and with the field even in
isotropic crystals. This phenomenon has been
studied in a number of investigations both experi-
mentally and theoretically.~*

In the case of three-sublattice iron garnets, one
expects that with increasing field, angles are first
formed predominantly between the rare-earth sub-
lattice moment and the net iron moment. Only at
much higher fields is the antiparallel alignment of
the iron moments broken up. This assumption is
based on the fact that the exchange coupling of the
rare-earth sublattice to the iron sublattices is weak
compared with the dominant coupling between the
two iron sublattices. Thus, in the past, molecular-
field theory has been applied to calculate the mag-
netic response of garnets to an external field, 13
but angle formation between the two iron moments

has been neglected. This simplifies the theoretical
treatment, and the instability criterion for the col-
linear phases is a two-sublattice relationship. !
Even in small fields, however, the simplified treat-
ment can lead to wrong results, especially if the
compensation point does not occur at very low tem-
peratures.

In the present work (Sec. II) we derive the correct
instability criterion for a three-sublattice system.
This criterion, together with the molecular-field
equations, determines the phase boundaries in the
field-temperature plane. As an application, we
calculate the magnetic-phase diagram for gadolinium
iron garnet (GdIG), the magnetic properties of which
can be reasonably well described by a simple three-
sublattice model. As all magnetic ions in this
material have an S ground state, crystal-field and
anisotropy effects are small® and can be neglected. ®
The values of the molecular-field coefficients are
available from various sources; in our calcula-
tions for GAIG we use Anderson’s set” which was
obtained from a fit of magnetization measurements.
The results agree well with our Faraday rotation
measurements which are reported in Sec. III. The
Faraday rotation is very sensitive to changes in
the spin configuration and therefore provides an
excellent tool for detection of the boundaries of the
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angled phase.

II. INSTABILITY CRITERION FOR COLLINEAR
PHASES AND ITS APPLICATION TO GdIG

For two-sublattice systems it has been shown
quite generally that there exists a critical tempera-
ture below which, in a closed region of the field-
temperature plane, the sublattice moments form
angles with each other and with the field. Outside
this region the moments and the field are collinear,
and all phase transitions are second order if anisot-
ropy can be neglected.* In the following we derive
the instability criterion for the collinear phases of
a three-sublattice system.

We start from the molecular-field equations for
a magnetically isotropic three-sublattice system
in an external field ﬁo:

M,=M%%§Bsi€—‘;e%%,—lfi>, i=1,2,3 (1)
where By, is the Brillouin function for spin S;, g
is the Landé factor, u 5 is Bohr’s magneton, kj is
Boltzmann’s constant, and 7' is the temperature.
M, denotes the magnetic moment of the ith sublattice
with magnitude M9 at zero temperature, and the
ﬁi’s are the effective fields acting on the sublat-
tices:

- — 3, -
H1=Hu+jz; My, A=y (2)

where the A;;’s denote the molecular-field coef-
ficients.
Since each sublattice moment is parallel to its
molecular field [see Eq. (1)] we obtain from Eq. (2)
— - 3 — —
M;XHp=- 20 A;M;xM; . &)
1=1; §#i
Introducing spherical coordinates (see Fig. 1),
we can write
H,=Hy0,0,1),
M; =¥ ,(sind; cos¢;, sinf; sing;, cosh;).

(4)

Note that a rearrangement of Eq. (3) gives the
conditions

3
Z Misine iCOS(]b{: 0,
i=1

(5)

3
Z’ M{ SinGiSin¢i=0,
i=l

i.e., the total magnetization is parallel to the

applied field.
Now let €;, i=1, 2,3 denote small deviations

from a collinear configuration:
6;=m;m+€;, n;=0or 1. (6)
Keeping only terms linear in the €;, we obtain

Mixﬁozo‘iHo(gh = Ni, 0):
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FIG. 1. Spherical coordinates for sublattice

magnetization 1\7[,- (external field ﬁo in z direction).

M M; =040, (£ = &5, =M =7;),0) , ™
where
o;=v;M,;, v;=cos(mm)==+1
and
£,=¢;sing;, 1;=€;c08¢;.

Equation (3) then reduces to

3

Ho;=— 2 Aijaj(‘gi —Ej)’
j=1

i=1,2,3 (8)

3

Hymy=- El A05(n; —771),
j=

where we have omitted the restriction j #¢ in the
summations, since the diagonal terms give no con-

tribution. Rewriting Eqs. (8) in the form
3 3 £y
2 [5ij (Ho+ 2 Aik0k> - )\iﬂj:’ =0, (9)
i=t k=1 ur

we see that the condition for nontrivial solutions
&; or m;, respectively, is

3
det[eu(}lo'}-z Aik0k> - Aijoj] =0.
k=1

Evaluating the determinant we obtain the in-
stability criterion for the collinear phases

(10)

HE+ Ho[Mp(01 +0p) + Ai3(04 + 03) + Ap3(05 + 05) ]
+ (07 +05+03) (M2 1307 + Aipp305 + Ay325503) = 0. (11)

For a given collinear configuration, defined by
the signs of the 0,’s, we now find the stability limits
by simultaneously solving (1), (2), and (11).

For the application to GAIG we use Anderson’s’
molecular-field coefficients® which (in Oeg/emu)

are®

K11= —61 000, A].z: —91 060, X13= —900,
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Apz= — 29000, Xpy= —4075,

Ag3=—200.
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FIG. 2. Phase diagram for GdIG. Arrows 1, 2, 3
denote the directions of the a, d, c sublattice moments,
respectively. The sublattices ¢ and a are completely
demagnetized at points P; and P,, respectively. () is
the lower portion of (a) on an enlarged-field scale. The
broken lines give the slopes of the phase boundaries near
the compensation point Toyy,.

Furthermore, we have S;=S,=3, S;=%, and’
MO=M)-M3+M3=94.8 emu/g,
so that
M?=59.25, MJ=88.875, M3=124.425 emu/g.

Finally, we know the spin configurations in small
fields. Below the compensation temperature, the
moments of the rare-earth and the octahedrally
coordinated iron sublattices are parallel to the
field, while the moment of the tetrahedrally co-
ordinated iron is antiparallel. Above the compensa-
tion temperature, all three moments are reversed.

The resulting phase diagram for GdIG is shown in
Figs. 2(a) and 2(b). Due to the very strong exchange
interactions, the angled phase only exists in ex-
tremely high fields, except at temperatures near
the compensation point. There are two regions in
the diagram where only collinear phases exist.
These two are separated by the angled phase region.
We see that by increasing the field isothermally
it is possible to cross the upper phase boundary
four times, in contrast to the two-sublattice case
where this can happen at most twice.! The right-
hand collinear region can be divided into three sub-
regions. Let us illustrate this by considering the
behavior of the sublattice moments along the phase
boundary. Starting from T,,,,, the two sublattice
moments 1 and 3, which are antiparallel to the
field H,, decrease in magnitude. At P,, the rare-
earth moment vanishes and then increases parallel
to Hy. At P, the same happens to the moment of
the octahedrally coordinated iron.

If we neglect Ay3, A3, and Hy with respect to Ay,,
Eq. (11) takes the simplified form

01+02+03=———°——1———3—H (0,+95) (12)

A1301 + Ag305

This is identical with the simplified criterion
which is obtained from the approximation that in
not too high fields the two iron moments remain
antiparallel. For GdIG, however, the simplified
criterion gives wrong results even in very small
fields. Calculations with criterion (12) yield phase
boundaries, the slopes of which (near to the com-
pensation point) have the wrong sign. So, in our
case, the instability with respect to angle forma-
tion between the two iron sublattices cannot be
neglected, although the angles are presumably very
small in low fields.

III. FARADAY ROTATION MEASUREMENTS

According to the calculated phase diagram (Fig.
2), all three sublattice moments are reversed if
the material is in a weak magnetic field and the
temperature passes through the compensation point.
In stronger fields, the sublattice reorientation takes
place in a finite temperature interval. The width
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of this interval is nearly proportional to the field
for fields up to 100 kOe and is rather small in
fields available in the laboratory. We have mea-
sured this width as a function of field by observing
the temperature dependence of the optical Faraday
rotation at constant field. The Faraday effect at
optical wavelengths is related to the individual sub-
lattice moments rather than to the total magnetiza-
tion, so that the temperature dependences of the
Faraday rotation and the magnetization in general
are very different from each other. ® In the com-
pensating region the magnetization is small and
shows comparatively little variation with tempera-
ture. In contrast, the magneto-optical rotation is
quite large and the sublattice reorientation is clearly
demonstrated by a corresponding reversal of the
sense of the rotation. !

The Faraday effect was measured using monochro-
matic light of a wavelength A=1.15 um and a mag-
netic field of up to 9.7 kOe which was applied paral-
lel to the light beam. The principle of operation
of our polarimetric system is as follows'% The
light beam is linearly polarized and passes through
a magneto-optic modulator to the sample, then
through an analyzer on to a photomultiplier. The
modulator causes the polarization plane of the light
reaching the analyzer to rotate cyclically a few de-
grees either side of the mean position. When this
oscillation occurs symmetrically about the crossed
position of analyzer and polarizer, the fundamental
cyclic frequency vanishes from the phototube out-
put signal. Using phase-sensitive detection of this
unbalance signal, the crossed position can be
located very precisely. When the sample induces
a rotation of the polarization plane, the analyzer
follows this rotation automatically. The analyzer
position is displayed directly on a recorder.

The modulator consists of a 10-cm-long flint
glass rod placed into a coil producing an ac magnetic
field with 50-Hz frequency and 600-Oe amplitude.
The Faraday effect caused by this oscillating field
in the glass rod provides the cyclic rotation of the
polarization plane. The polarizer and analyzer are
Glan prisms. The dc field magnetizing the sample
is produced by an electromagnet with axial holes
which allow optical access parallel to the field
direction.

The sample, a single-crystal GdIG platelet 0. 49
mm thick, was thermally insulated by vacuum and
a radiation shield. The shield together with the
crystal-holder block could be cooled down with dry
ice. While the whole unit warmed up slowly to
room temperature, the rotation of the polarization
plane induced by the sample was recorded as a
function of temperature. Temperature measure-
ments were made by means of a thermocouple
attached to the crystal.

Three typical recorder traces are shown in Fig.
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3. A few degrees above and below the compensa-
tion temperature — which is 285.7K in our sample -
the rotations are about equal in magnitude but have
opposite signs and vary little with temperature and
field. Close to the compensation temperature, the
rotation angle changes rapidly in a temperature
interval which is about 2° wide at 9.7 kOe and 1°
at 4.6 kOe. In lower fields the interval boundaries
are less clearly marked in the curves, since at
temperatures close to the compensation point the
field fails to saturate the sample.

In Fig. 3(c) the Faraday rotation varies nearly
linearly with temperature in the reorientation
region, but with some reproducible superimposed
oscillations. Without analyzing the motion of the
magnetization vectors in detail, we attribute these
oscillations to the small magnetocrystalline anisot-
ropy. Since the applied field is weak compared to
the exchange fields acting on the magnetic moments,
the sublattice moments will remain nearly collinear
during their reversal, and the Faraday effect will
reflect the change of their projection on the field
direction. The easy directions are [111],° and our
sample was cut normal to [211]. The sequence of
hard and easy directions which the moments sample
during their rotation can account qualitatively for
the observed pattern.

Our measurements cover an extremely small
portion of the phase diagram, but they yield the
slopes of the two phase boundaries at the compen-
sation point. The experimental values d7,.;;/dH,
~+0.1 deg/kOe compare favorably with the cal-
culated ones of +0.094 deg/kOe. This agreement
is encouraging, since the values of the molecular-
field coefficients were not fitted to our results but
were taken from magnetization measurements. Note
also that anisotropy effects, though they are small,
could play a role in our experiments since the
Zeeman energy in our weak fields may be equally
small.

4
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FIG. 3. Temperature dependence of the Faraday ro-

tation in GdIG. Sample thickness d=0,49 mm, wave-
length A=1,15 pm.
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Further valuable information could be obtained
from measurements in considerably higher fields.
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The disaccommodation technique was used to determine the activation volumes of carbon dif-
fusion AV of a Fe—1.4 wt% Si alloy, of hcp cobalt, and of nickel at the temperatures of -21, 75,
and 110 °C, respectively. The obtained values of AV are +0.3 + 0.3 and -0.6 + 0.9 cm® mole-!
for the two relaxations observed in the Fe-Si alloy, -1.7 + 2.0 and -0.5 £ 0.2 cm® mole™! for the
two relaxations observed in hep cobalt, and 1.2 + 0.1 cm® mole™ for nickel. These results are
discussed in terms of a continuum model that interprets the activation energy of diffusion as a

sum of the strain and exchange energies.

It is found that in ferromagnetic solids the activation

volume of diffusion is essentially controlled by the ferromagnetic anharmonicity.

I. INTRODUCTION

The activation volume of diffusion AV is the
volume change of a crystal that occurs as the dif-
fusing species performs one elementary diffusive
jump. In the case of substitutional and self-dif-
fusion, AV is the sum of the activation volumes of
formation AV, and migration AV,, whereas AV
= AV,, for impurity interstitial diffusion and dif-
fusion by an exchange-type mechanism. On the

basis of a hard-sphere model, * AV would be ex-
pected to be positive and of the order of the atomic
volume of the diffusing species . While negative
activation volumes are inconsistent with the hard-
sphere model, it is conceivable that AV, <0 for
vacancy-type defects if the lattice relaxation around
the defect is sufficiently large.! The activation
volume of migration, on the other hand, should not
be negative, as this would require that an inward
relaxation is associated with the elementary dif-



